Performs \(\Delta C_T\) analysis for target genes by applying \(\Delta C_T\) method to each target gene. Target genes must be provided as paired efficiency (E) and Ct columns followed by the the reference gene(s) columns. See "Input data structure and column arrangement" in vignettes for details about data structure.
Usage
ANOVA_DCt(
x,
numOfFactors,
numberOfrefGenes,
block,
alpha = 0.05,
p.adj = "none",
analyseAllTarget = TRUE
)Arguments
- x
A data frame containing experimental design columns, target gene E/Ct column pairs, and reference gene E/Ct column pairs. Reference gene columns must be located at the end of the data frame.
- numOfFactors
Integer. Number of experimental factor columns (excluding
repand optionalblock).- numberOfrefGenes
Integer. Number of reference genes. Each reference gene must be represented by two columns (E and Ct).
- block
Character or
NULL. Name of the blocking factor column. When a qPCR experiment is done in multiple qPCR plates, variation resulting from the plates may interfere with the actual amount of gene expression. One solution is to conduct each plate as a randomized block so that at least one replicate of each treatment and control is present on a plate. Block effect is usually considered as random and its interaction with any main effect is not considered.- alpha
statistical level for comparisons
- p.adj
Method for p-value adjustment. See
p.adjust.- analyseAllTarget
Logical or character. If
TRUE(default), all detected target genes are analysed. Alternatively, a character vector specifying the names (names of their Efficiency columns) of target genes to be analysed.
Value
An object containing expression table, lm models, ANOVA tables, residuals, raw data and ANOVA table for each gene.
- \(\Delta C_T\) combined expression table
object$combinedResults- ANOVA table for treatments
object$perGene$gene_name$ANOVA_T- ANOVA table factorial
object$perGene$gene_name$ANOVA_factorial- lm ANOVA for tratments
object$perGene$gene_name$lm_T- lm ANOVA factorial
object$perGene$gene_name$lm_factorial- Residuals
resid(object$perGene$gene_name$lm_T)
Examples
data <- read.csv(system.file("extdata", "data_3factor.csv", package = "rtpcr"))
res <- ANOVA_DCt(
data,
numOfFactors = 3,
numberOfrefGenes = 1,
block = NULL)
#> NULL
#>
#> Relative expression (DCt method)
#> Type Conc SA RE log2FC LCL UCL se Lower.se.RE Upper.se.RE
#> 1 S H A2 5.1934 2.3767 8.1197 3.3217 0.1309 4.7428 5.6867
#> 2 S H A1 2.9690 1.5700 4.6420 1.8990 0.0551 2.8578 3.0846
#> 3 R H A2 1.7371 0.7967 2.7159 1.1110 0.0837 1.6391 1.8409
#> 4 S L A2 1.5333 0.6167 2.3973 0.9807 0.0865 1.4441 1.6280
#> 5 R H A1 0.9885 -0.0167 1.5455 0.6323 0.0841 0.9325 1.0479
#> 6 S L A1 0.7955 -0.3300 1.2438 0.5088 0.2128 0.6864 0.9220
#> 7 S M A2 0.7955 -0.3300 1.2438 0.5088 0.2571 0.6657 0.9507
#> 8 R M A1 0.6271 -0.6733 0.9804 0.4011 0.4388 0.4626 0.8500
#> 9 S M A1 0.4147 -1.2700 0.6483 0.2652 0.2540 0.3477 0.4945
#> 10 R M A2 0.3150 -1.6667 0.4925 0.2015 0.2890 0.2578 0.3848
#> 11 R L A1 0.2852 -1.8100 0.4459 0.1824 0.0208 0.2811 0.2893
#> 12 R L A2 0.0641 -3.9633 0.1002 0.0410 0.8228 0.0362 0.1134
#> Lower.se.log2FC Upper.se.log2FC sig
#> 1 2.1705 2.6025 a
#> 2 1.5112 1.6311 ab
#> 3 0.7517 0.8443 bc
#> 4 0.5808 0.6548 c
#> 5 -0.0177 -0.0157 cd
#> 6 -0.3825 -0.2847 d
#> 7 -0.3944 -0.2761 d
#> 8 -0.9127 -0.4968 de
#> 9 -1.5145 -1.0650 ef
#> 10 -2.0363 -1.3641 f
#> 11 -1.8363 -1.7841 f
#> 12 -7.0103 -2.2407 g
#>
#> Combined Expression Table (all genes)
#> gene Type Conc SA RE log2FC LCL UCL se Lower.se.RE
#> 1 PO S H A2 5.1934 2.3767 8.1197 3.3217 0.1309 4.7428
#> 2 PO S H A1 2.9690 1.5700 4.6420 1.8990 0.0551 2.8578
#> 3 PO R H A2 1.7371 0.7967 2.7159 1.1110 0.0837 1.6391
#> 4 PO S L A2 1.5333 0.6167 2.3973 0.9807 0.0865 1.4441
#> 5 PO R H A1 0.9885 -0.0167 1.5455 0.6323 0.0841 0.9325
#> 6 PO S L A1 0.7955 -0.3300 1.2438 0.5088 0.2128 0.6864
#> 7 PO S M A2 0.7955 -0.3300 1.2438 0.5088 0.2571 0.6657
#> 8 PO R M A1 0.6271 -0.6733 0.9804 0.4011 0.4388 0.4626
#> 9 PO S M A1 0.4147 -1.2700 0.6483 0.2652 0.2540 0.3477
#> 10 PO R M A2 0.3150 -1.6667 0.4925 0.2015 0.2890 0.2578
#> 11 PO R L A1 0.2852 -1.8100 0.4459 0.1824 0.0208 0.2811
#> 12 PO R L A2 0.0641 -3.9633 0.1002 0.0410 0.8228 0.0362
#> Upper.se.RE Lower.se.log2FC Upper.se.log2FC sig
#> 1 5.6867 2.1705 2.6025 a
#> 2 3.0846 1.5112 1.6311 ab
#> 3 1.8409 0.7517 0.8443 bc
#> 4 1.6280 0.5808 0.6548 c
#> 5 1.0479 -0.0177 -0.0157 cd
#> 6 0.9220 -0.3825 -0.2847 d
#> 7 0.9507 -0.3944 -0.2761 d
#> 8 0.8500 -0.9127 -0.4968 de
#> 9 0.4945 -1.5145 -1.0650 ef
#> 10 0.3848 -2.0363 -1.3641 f
#> 11 0.2893 -1.8363 -1.7841 f
#> 12 0.1134 -7.0103 -2.2407 g
